Therapeutic touch affects DNA synthesis and mineralization of human osteoblasts in culture.
نویسندگان
چکیده
Complementary and alternative medicine (CAM) techniques are commonly used in hospitals and private medical facilities; however, the effectiveness of many of these practices has not been thoroughly studied in a scientific manner. Developed by Dr. Dolores Krieger and Dora Kunz, Therapeutic Touch is one of these CAM practices and is a highly disciplined five-step process by which a practitioner can generate energy through their hands to promote healing. There are numerous clinical studies on the effects of TT but few in vitro studies. Our purpose was to determine if Therapeutic Touch had any effect on osteoblast proliferation, differentiation, and mineralization in vitro. TT was performed twice a week for 10 min each on human osteoblasts (HOBs) and on an osteosarcoma-derived cell line, SaOs-2. No significant differences were found in DNA synthesis, assayed by [(3)H]-thymidine incorporation at 1 or 2 weeks for SaOs-2 or 1 week for HOBs. However, after four TT treatments in 2 weeks, TT significantly (p = 0.03) increased HOB DNA synthesis compared to controls. Immunocytochemistry for Proliferating Cell Nuclear Antigen (PCNA) confirmed these data. At 2 weeks in differentiation medium, TT significantly increased mineralization in HOBs (p = 0.016) and decreased mineralization in SaOs-2 (p = 0.0007), compared to controls. Additionally, Northern blot analysis indicated a TT-induced increase in mRNA expression for Type I collagen, bone sialoprotein, and alkaline phosphatase in HOBs and a decrease of these bone markers in SaOs-2 cells. In conclusion, Therapeutic Touch appears to increase human osteoblast DNA synthesis, differentiation and mineralization, and decrease differentiation and mineralization in a human osteosarcoma-derived cell line.
منابع مشابه
X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts.
Radiotherapy is considered to cause detrimental effects on bone tissue eventually increasing bone loss and fracture risk. However, there is a great controversy on the real effects of irradiation itself on osteoblasts, and the mechanisms by which irradiation affects osteoblast differentiation and mineralization are not completely understood. We explored how X-ray radiation influences differentia...
متن کاملTherapeutic Doses of Nonsteroidal Anti-Inflammatory Drugs Inhibit Osteosarcoma MG-63 Osteoblast-Like Cells Maturation, Viability, and Biomineralization Potential
Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used to reduce pain and inflammation. However, their effect on bone metabolisms is not well known, and results in the literature are contradictory. The present study focusses on the effect of dexketoprofen, ketorolac, metamizole, and acetylsalicylic acid, at therapeutic doses, on different biochemical and phenotypic pathways in human ...
متن کاملTherapeutic touch stimulates the proliferation of human cells in culture.
OBJECTIVES Our objective was to assess the effect of Therapeutic Touch (TT) on the proliferation of normal human cells in culture compared to sham and no treatment. Several proliferation techniques were used to confirm the results, and the effect of multiple 10-minute TT treatments was studied. DESIGN Fibroblasts, tendon cells (tenocytes), and bone cells (osteoblasts) were treated with TT, sh...
متن کاملOsteoblasts isolated from mouse calvaria initiate matrix mineralization in culture
A method is presented for isolating osteoblasts from newborn mouse calvaria without the use of digestive enzymes. The procedure is based on the ability of osteoblasts to migrate from bone onto small glass fragments (Jones, S.J., and A. Boyde, 1977, Cell Tissue Res., 184:179-193). The isolated cells were cultured for up to 14 d in Dulbecco's modified Eagle's medium supplemented with 10% fetal ca...
متن کاملCollagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts
A newly defined chick calvariae osteoblast culture system that undergoes a temporal sequence of differentiation of the osteoblast phenotype with subsequent mineralization (Gerstenfeld, L. C., S. Chipman, J. Glowacki, and J. B. Lian. 1987. Dev. Biol. 122:49-60) has been examined for the regulation of collagen synthesis, ultrastructural organization of collagen fibrils, and extracellular matrix m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2008